Octopus bimaculoides (Bimac) Pickford and McConnaughey, 1949

It's fantastic that you have that resource. Pea sized crabs? You're in cephaloculture heaven! Good luck in your endeavors- I can't wait to hear some updates.

Cheers, Jimbo
 
My egg source fell through this morning so I'm searching for another. I was hoping to have eggs within two weeks, but now it might take that long just to find another diver/supplier.

Dan

ps...the crabs are parasitic in the aquaculture clams around here. The "infected" clams used to be just ground up and exported for clam cakes and the like, but now they don't like to do that because of crustacean allergies. Now they have a method where they dip all the clams in vat with either hyper or hyposaline water (forget which). The crabs all come out and are round up in bins and sent to the incinerator.
 
Aggressive male mating behavior depends on female maturity inOctopus bimaculoides
Sobhi Mohanty,Alfredo F. Ojanguren,Lee A. Fuiman 2014 (subscription)

Abstract
This laboratory study examined the combined effects of male and female behaviors on the outcome of mating encounters inOctopus bimaculoides. We found that male–male competition for mating opportunities depends on female maturity; the presence of immature females elicited significantly higher levels of aggression between competing males. We conclude that males are able to assess the reproductive status of females. The study also found that immature and mature females resisted male mating attempts to a similar extent but that males that showed more aggression toward male competitors were able to spend more time in contact with females. We suggest that the lack of prominent visual displays in these mating trials indicates the importance of chemical cues inOctopusmating systems, as has been demonstrated for other cephalopods. This study contributes to the growing research on cephalopod mating systems and in particular shows thatOctopusmating dynamics may be more behaviorally complex than initially assumed.
 
Diet of Octopus bimaculatus Verril, 1883 (Cephalopoda: Octopodidae) in Bahía De Los Ángeles, Gulf of California
Journal of Shellfish Research 33(1):305-314. 2014
access_no.gif

Elisa Jeanneht Armendáriz Villegas , Bertha Patricia Ceballos-Vázquez , Unai Markaida , Andrés Abitia-Cárdenas , Marco Antonio Medina-López, Marcial Arellano-Martínez

ABSTRACT
Two hundred sixty-one octopuses were obtained from August 2006 to June 2007 in Bahía de Los Angeles, BC, Mexico. Sizes ranged from 58–190 mm in mantle length. Diet was determined from 3 sources: the digestive tract analysis (hard rests), accumulations of hard prey remaining in refuges, and live prey present during capture. Ripe females had the greatest fullness weight index (FWI) whereas spawning/spent females had the lowest. During the spring, female and male octopuses showed the greatest FWI, whereas in summer they showed the lowest, coinciding with the spawning/spent stage. A total of 76 prey items from 8 phyla were found, with Mollusca being the most important phylum and xanthid crabs the most important prey year-round. During autumn and winter, more bivalves were consumed, whereas more crabs were consumed in spring. Males fed mainly on crabs during all gonad development stages, but spent males fed mostly on molluscs. In contrast, females fed mostly on molluscs, except ripe females, which included more crabs in their diet. The octopus Octopus bimaculatus appears to be a specialist consumer, and this selectivity could be a consequence of different energetic demands of each sex during the gonad ripening process.
Keywords: food preference, diet, midden, digestive tract analysis, California two-spotted octopus, Octopus bimaculatus

CrossRef
Ambrose, R. F. 1983. Midden formation by octopuses: the role of biotic and abiotic factors. Mar. Behav. Physiol. 10:137–144. CrossRef
Ambrose, R. F. 1984. Food preferences, prey availability and the diet of Octopus bimaculatus Verril. J. Exp. Mar. Biol. Ecol. 77:29–44. CrossRef
Ambrose, R. F., M. A. Land & F. G. Hochberg. 1997. Octopus bimaculatus. In: M. A. Land & F. G. Hochberg, editors. Proceedings of the workshop on the fishery and market potential of octopus in California. Washington, DC: Smithsonian Institution, pp . 11–22.
Ambrose, R. F. & B. Nelson. 1983. Prédation by Octopus vulgaris in the Mediterranean. Mar. Ecol. (Berl.) 4:251–261. CrossRef
Anderson, R. C., J. Wood & J. A. Mather. 2008. Octopus vulgaris in the Caribbean is a specializing generalist. Mar. Ecol. Prog. Ser. 371:199–202. CrossRef
Barnard, J. L. & J. R. Grady. 1968. A biological survey on Bahía de Los Angeles. Gulf of California, México: general account. San Diego Soc. Nat. Hist. 115:51–66.
Boucher-Rodoni, R., E. Boucaud-Camou & K. Mangold. 1987. Feeding and digestion. In: P. R. Boyle, editor. Cephalopod life cycle. Vol. II: comparative reviews. London: Academic Press, pp. 85–108.
Brusca, R. C. 1980. Common intertidal invertebrates of the Gulf of California, 2nd edition. Tucson, AZ: University of Arizona Press. 513 pp.
Brusca, R. C. & G. J. Brusca. 2005. Invertebrados. Madrid: McGraw Hill-Interamericana. 1005 pp.
Bustos-Serrano, H., R. Millán-Núñez & R. Cajal-Medrano. 1996. Efecto de la marea en la productividad orgánica primaria en una laguna costera del Canal de Ballenas, Golfo de California. Cienc. Mar. 22:215–233.
Cagnetta, P. & A. Sublimi. 2000. Productive performance of the common octopus (Octopus vulgaris C.) when fed on a monodiet: recent advances in Mediterranean aquaculture finfish species diversification. Zaragoza, Spain: CIHEAM. 47:331–336.
Cailliet, M. G., M. S. Love & A. W. Ebeling. 1986. Fishes: a field and laboratory manual on their structure identification and natural history. Belmont, CA: Wadsworth. 194 pp.
Cardoso, F., P. Villegas & C. Estrella. 2004. Observaciones sobre la biología de Octopus mimus (Cephalopoda: Octopoda) en la costa Peruana. Rev. Peru. Biol. 11:45–50.
Castellanos-Martínez, S. 2008. Biología reproductiva del pulpo Octopus rbimaculatus Verril, 1883 en Bahía de los Angeles, Baja California, México. MS thesis. Instituto Politécnico Nacional. 98 pp.
Cherel, Y. & K. A. Hobson. 2005. Stable isotopes, beaks and predators: a new tool to study ecology of cephalopods, including giant and colossal squids. Proc. R. Soc. Lond. 272:1601–1607. CrossRef, PubMed
Cortez, T., B. G. Castro & A. Guerra. 1995. Feeding dynamics of Octopus mimus (Mollusca: Cephalopoda) in northern Chile waters. Mar. Biol. 123:497–503. CrossRef
Delgadillo-Hinojosa, F., G. Gaxiola-Castro, J. A. Segovia-Zavala, A. Muñoz-Barbosa & M. V. Orozco-Borbón. 1997. The effect of vertical mixing on primary production in a bay of the Gulf of California. Estuar. Coast. Shelf Sci. 45:135–148. CrossRef
Dodge, R. & D. Scheel. 1999. Remains of the prey, recognizing the midden piles of Octopus dofleini (Wulker). Veliger 42:260–266.
Domínguez, P., G. Gaxiola-Cortés & C. Rosas-Vázquez. 2004. Alimentación y nutrición de moluscos cefalópodos: avances recientes y perspectivas futuras. In: L. E. Cruz-Suárez, M. D. Ricque, M. G. Nieto-López, D. Villarreal, U. Scholz & M. González, editors. Avances en Nutrición Acuícola. Memorias del VII Simposium Internacional de Nutrición Acuícola. Hermosillo, Mexico: Universidad de Sonora, pp. 16–19.
Fisher, W. K. 1946. Echiuroid worms of the North Pacific Ocean. Proc. U. S. Nat. Mus. 96:215–292. CrossRef
García-García, B. & F. Aguado-Giménez. 2002. Influence of diet on growing and nutrient utilization in the common octopus (Octopus vulgaris). Aquaculture 211:173–184.
Ghiretti, F. 1959. Cephalotoxin: the crab-paralyzing posterior salivary glands in the cephalopods. Nature 182:1192–1193. CrossRef
Grubert, M. A., V. A. Wadley & R. W. White. 1999. Diet and feeding strategy of Octopus maorum in southeast Tasmania. Bull. Mar. Sei. 65:441–451.
Guerra, A. 1992. Fauna Ibérica, Vol. 1: Mollusca, Cephalopoda. Museo Nacional de Ciencias Naturales. Madrid: Consejo Superior de Investigaciones Científicas. 327 pp.
Hanlon, R. & J. B. Messenger. 1998. Cephalopod behavior. Cambridge: University Press. 232 pp.
Hartwick, E. B., R. F. Ambrose & S. M. C. Robinson. 1984. Den utilization and the movements of tagged Octopus dofleini. Mar. Behav. Physiol. 11:95–110. CrossRef
Heemstra, P. C. 1995. Serranidae. In: W. F. Fischer, W. Krup, C. Schneider, K. Sommer, E. Carpenter & V. H. Niem, editors. Guía FAO para la identificación de especies para los fines de la pesca. Vol. III: Pacífico Centro-Oriental. Rome: FAO. pp. 1565–1613.
Hendrickx, M. E. 1995. Cangrejos. In: W. F. Fischer, W. Krup, C. Schneider, K. Sommer, E. Carpenter & V. H. Niem, editors. Guía FAO para la identificación de especies para los fines de la pesca. Vol. I: Pacífico Centro-Oriental. Rome: FAO. pp. 565–636.
Hernández-López, J. L. 2000. Biología, ecología y pesca del pulpo común (Octopus vulgaris, Cuvier 1797) en aguas de Gran Canaria. PhD diss., University Las Palmas Gran Canaria. 210 pp.
Hochberg, F. G. & W. G. Fields. 1980. Cephalopods: the squids and octopuses. In: R. Morris, D. Abbot & E. Haderlie, editors. Intertidal invertebrates of California. Stanford, CA: Stanford University Press, pp. 429–444.
Huribert, S. H. 1978. The measurement of the niche overlap and some relatives. Ecology 59:67–77. CrossRef
Hyslop, E. J. 1980. Stomach content analysis: a review of methods and their applications. J. Fish Biol. 17:411–429. CrossRef
Iribarne, O. O., M. E. Fernández & H. Zucchini. 1991. Prey selection by the small Patagonian octopus Octopus tehuelchus D'Orbigny. J. Exp. Mar. Biol. Ecol. 148:271–281. CrossRef
Jaeger, R. G. & J. Lucas. 1990. On evaluation of foraging strategies through estimates of reproductive success. In: R. Hughes, editor. Behavioral mechanisms of food selection. Alemania: Springer-Verlag. pp. 83–94.
Joll, L. M. 1976. Mating, egg-laying and hatching of Octopus tetricus (Mollusca: Cephalopoda) in the laboratory. Mar. Biol. 36:327–333. CrossRef
Keen, M. 1971. Sea shells of tropical west America: marine mollusks from California to Peru. Stanford, CA: Stanford University Press. 1064 pp.
Kerstitch, A. N. & H. Bertsch. 2007. Sea of Cortez marine invertebrates: a guide for the Pacific coast, México to Perú. Monterey, CA: Sea Challengers. 124 pp.
López-Uriarte, E., E. Rios-Jara & M. E. González-Rodríguez. 2010. Diet and feeding habits of Octopus hubbsorum Berry, 1953 in the Central Mexican Pacific. Veliger 51:26–42.
Mangold, K. 1987. Reproduction. In: P. Boyle, editor. Cephalopod life cycles. London: Academic Press, pp. 157–200.
Mather, J. 1980. Some aspects of food intake in Octopus joubini Robson. Veliger 22:286–290.
Mather, J. A. & R. C. Anderson. 1993. Personalities of octopuses (Octopus rubescens). J. Comp. Psychol. 107:336–340. CrossRef
Mather, J. A. & R. K. O'Dor. 1991. Foraging strategies and prédation risk shape the natural history of juvenile Octopus vulgaris. Bull. Mar. Sci. 49:256–269.
Nixon, M. 1966. Changes on body weight and intake of food by Octopus vulgaris. J. Zool. 150:1–9. CrossRef
Nixon, M. 1987. Cephalopod diets. In: P. R. Boyle, editor. Cephalopod life cycle. Vol. II: comparative reviews. London: Academic Press, pp. 201–217.
Nixon, M. & P. R. Boyle. 1982. Hole-drilling in crustaceans by Eledone cirrhosa (Mollusca: Cephalopoda). J. Zool. 196:439–444. CrossRef
O'Dor, R. K. & M. J. Wells. 1978. Reproduction versus somatic growth: hormonal control in Octopus vulgaris. J. Exp. Biol. 77:15–31. PubMed
Olivares-Paz, A., M. Zamora-Covarrubias, P. Portilla-Reyes & O. Zúñiga-Romero. 2001. Estudio histológico de la ovogénesis y maduración ovárica en Octopus mimus (Cephalopoda: Octopodidae) de la II región de Chile. Estud. Océanol. 20:13–22.
Poutiers, J. M. 1995. Gasterópodos. In: W. F. Fischer, W. Krup, C. Schneider, K. Sommer, E. Carpenter & V. H. Niem, editors. Guía FAO para la identificación de especies para los fines de la pesca. Vol. I: Pacífico Centro-Oriental. Rome: FAO. pp. 223–297.
Quetglas, A., F. Alemany, A. Carbonell, P. Merella & P. Sánchez. 1998. Biology and fishery of Octopus vulgaris Cuvier, 1797, caught by trawlers in Mallorca (Balearic Sea, western Mediterranean). Fish. Res. 36:237–249. CrossRef
Quetglas, A., M. González & I. Franco. 2005. Biology of the upper-slope cephalopod Octopus salutii from the western Mediterranean Sea. Mar. Biol. 146:1131–1138. CrossRef
Rodríguez-Rúa, A., I. Pozuelo, M. A. Prado, M. J. Gómez & M. A. Bruzón. 2005. The gametogenic cycle of Octopus vulgaris (Mollusca: Cephalopoda) as observed on the Atlantic coast of Andalusia (south of Spain). Mar. Biol. 147:927–933. CrossRef
Schoener, T. W. 1971. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 11:396–404.
Smale, M. J. & P. R. Buchan. 1981. Biology of Octopus vulgaris off the east coast of South Africa. Mar. Biol. 65:1–12. CrossRef
Smith, C. D. 2003. Diet of Octopus vulgaris in False Bay, South Africa. Mar. Biol. 143:1127–1133. CrossRef
Sommer, C. 1995. Kyphosidae. In: W. F. Fischer, W. Krup, C. Schneider, K. Sommer, E. Carpenter & V. H. Niem, editors. Guía FAO para la identificación de especies para los fines de la pesca. Vol. II: Pacífico Centro-Oriental. Rome: FAO. pp. 1195–1200.
Villanueva, R. 1993. Diet and mandibular growth of Octopus magnificus (Cephalopoda). South Afr. J. Mar. Sci. 13:121–126. CrossRef
Wodinsky, J. 1978. Feeding behaviour of broody female Octopus vulgaris. Anim. Behav. 26:803–813. CrossRef
Yee-Duarte, J. A., B. P. Ceballos-Vázquez & M. Arellano-Martinez. 2009. Variación de los índices morfofisiológicos de la almeja mano de león Nodipecten subnodosus (Sowerby, 1835), en Bahía de los Ángeles, B.C., Golfo de California. Oceánides 24:91–99.
Zamora, C. M. & P. A. Olivares. 2004. Variaciones bioquímicas e histológicas asociadas al evento reproductive de la embrace de Octopus mimus (Mollusca: Cephalopoda). Dint. J. Morph. 22:207–216.
 
The octopus genome and the evolution of cephalopod neural and morphological novelties
Caroline B. Albertin,Oleg Simakov,Therese Mitros,Z. Yan Wang,Judit R. Pungor,Eric Edsinger-Gonzales,Sydney Brenner,Clifton W. Ragsdale, Daniel S. Rokhsar 2015 (open access)

Bimaculoides genome sequenced! (DWhatley)

Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire1. They have the largest nervous systems among the invertebrates2 and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system1, 3. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus, Octopus bimaculoides. We found no evidence for hypothesized whole-genome duplications in the octopus lineage4, 5, 6. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described7, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems. ...
 
Morphological and physiological changes of Octopus bimaculoides: From embryo to juvenile
lL.E.Ibarra-García, J.M.Mazón-Suástegui, C.Rosas, D.Tovar-Ramírez, Guadalupe Bárcenas-Pazos, R.Civera-Cerecedo, A.I.Campa-Córdova 2018 (subscription Science Direct)
Highlights

  • Octopus bimaculoides is a novel aquaculture candidate for its holobenthic life cycle.
  • Embryonic development of Octopus bimaculoides lasted 65 days at 18 °C.
  • Digestive enzymatic activity started from late embryonic stages.
  • Hatchlings internal yolk depletion occurred at 12 DAH.
 

Shop Amazon

Shop Amazon
Shop Amazon; support TONMO!
Shop Amazon
We are a participant in the Amazon Services LLC Associates Program, an affiliate program designed to provide a means for us to earn fees by linking to Amazon and affiliated sites.
Back
Top